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Abstract. Constitutive relations for complex fluids (e.g. polymeric fluids) are derived from 
the assumption that the equations that govern the time evolution of the complex fluids 
possess the generalised Hamiltonian structure. The constitutive relations consist of a 
configuration space kinetic equation, an extended local equilibrium relation, an expression 
for the extra stress tensor and an expression for the heat flux. In the particularly interesting 
case of complex fluids with spatially inhomogeneous internal structure, the extra stress 
tensor includes an extension of the Ericksen stress and the heat flux includes non-Fourier- 
type contributions. 

1. Introduction 

A comparison of the observed and the predicted macroscopic behaviour of fluids shows 
that for some fluids the time evolution of their macroscopic and microscopic characteris- 
tics cannot be separated. Such fluids will be called in this paper complex fluids. By 
macroscopic behaviour we mean the behaviour described by the five hydrodynamic 
fields of mass, momentum and energy densities. The predicted macroscopic behaviour 
is then the behaviour described by solutions of hydrodynamic equations. A microscopic 
characteristic of a fluid is a quantity (usually another field or a distribution function) 
that characterises the internal structure of the fluids under consideration. For example, 
a polymeric fluid (the reader can think about egg white) or a suspension are complex 
fluids. In the case of polymeric fluids, the internal structure is the structure of the 
macromolecules; in the case of suspensions it is the structure of suspended particles. 
Experience shows that for complex fluids any decoupling of hydrodynamic equations 
from the equations governing the time evolution of the internal structure leads to 
equations whose solutions do not agree with results of observations. An example of 
observations that cannot be predicted in the context of the five field and local-in-time 
hydrodynamic equations are the observations manifesting the so-called viscoelastic 
behaviour. Fluids that are not complex (i.e. the fluids for which the time evolution of 
their internal structure can be, with sufficient accuracy, decoupled from their hydro- 
dynamic behaviour) will be called simple. By decoupling we mean here a separation 
that does not introduce into the time evolution equations integrals over the past time. 

For simple fluids, the time evolution equations are introduced by requiring that 
their solutions agree with the following observations: 

(i)  conservation of the total mass, momentum and energy; 
(i i)  equilibrium thermodynamic experience (i.e. fluids that are isolated from their 

surroundings approach equilibrium states at which their behaviour is well described 
by equilibrium thermodynamics). 

0305-4470/89/20437S + 20$02.50 @ 1989 IOP Publishing Ltd 4375 
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To guarantee agreement with the first observation, the time evolution equations 
have to have the form of a derivative with respect to time of a hydrodynamic field 
being equated to a divergence of a flux (this is, however, only true if we exclude 
non-local-in-space time evolution equations). The agreement with the second observa- 
tion is guaranteed by an appropriate choice of the fluxes. The restrictions on the 
freedom of choice of the fluxes are usually expressed as the entropy inequality, the 
local equilibrium relation and the Onsager-Casimir symmetry (see § 2 ) .  

We shall try to follow the same route also in the context of complex fluids. Solutions 
to the time evolution equations of complex fluids will be required to agree with the 
same observations (i)  and (ii) that we introduced in the context of simple fluids. It is 
not, however, evident how the analysis relating this requirement with the structure of 
the equations, that has been developed in the context of simple fluids, extends to 
complex fluids. The extension proposed in this paper is based on the following 
observation. It has been shown (Grmela 1986, also § 2 of this paper) that the entropy 
inequality, the local equilibrium relation and the Onsager-Casimir symmetry are 
consequences of a generalised Hamiltonian structure of the hydrodynamic equations 
of simple fluids. Moreover, the generalised Hamiltonian structure has been shown 
(Gremela 1986, 1988b) to express the compatibility of dynamical equations with 
equilibrium thermodynamics also on other levels of description (including for example 
the kinetic theory description). We shall therefore assume that the time evolution 
equations describing complex fluids will also possess the generalised Hamiltonian 
structure. It is quite straightforward to extend the Hamiltonian structure from simple 
to complex fluids (Grmela 1988a), where incompressible and isothermal fluids are 
considered, and 8 3 of this paper, where the general complex fluids are discussed. 
Consequences of the generalised Hamiltonian structure are then interpreted as 
extensions of the entropy inequality, the local equilibrium relation and the the Onsager- 
Casimir symmetry. The results obtained as a consequence of the generalised structure 
also include expressions for the extra stress tensor and the heat flux. 

In § 4 we confront the results obtained in § 3 with results obtained from other 
approaches. First, we turn our attention to kinetic theory of polymeric fluids (Kirkwood 
1967, Bird e? a1 1987, Doi and Edwards 1986), which offers another approach to the 
analysis of complex fluids. A comparison of the kinetic theory approach and the 
approach followed in this paper will be made in 9 4. Some results introduced in 8 3 
will be shown to agree with results obtained in kinetic theory. Most of the results 
arising in § 3 have not, however, been derived previously in kinetic theory. Finally, 
we can test our results against results of observations. We recall that we know already 
that solutions to equations introduced in this paper agree with the observations (i) 
and (ii) mentioned above (i.e. conservation of the total mass, momentum and energy, 
and compatibility with equilibrium thermodynamics). This is because the requirement 
for agreement with these two observations is the basis for the approach used in this 
paper. Other experimental observations with which we can confront the results obtained 
in this paper are rheological measurements. The new results appearing in this paper 
are particularly pertinent to the situation in which the internal structure is spatially 
inhomogeneous. This is the situation arising frequently for example in processing of 
polymeric liquid crystals (Denn 1986). Our results predict new stresses and a new 
heat flux arising due to the spatial inhomogeneity of the internal structure. The new 
stresses can be regarded as Ericksen stresses (Ericksen 1960) formulated on the kinetic 
theory level of description. The new heat flux has not been, to the best of our knowledge, 
introduced previously on any level of description. The question of which specific 



Hamiltonian mechanics of complex fluids 4377 

experimental results could be used to test these predictions remains unanswered in 
this paper. 

2. Hamiltonian mechanics of simple fluids 

In this section we shall review the generalised Hamiltonian structure of simple fluids. 
We shall also present the entropy inequality, the local equilibrium relation and the 
Onsager-Casimir symmetry as a consequence of the Hamiltonian structure. The main 
objective of this section is to prepare the setting for 5 3, where the complex fluids are 
considered. 

Our interest in the macroscopic behaviour of fluids motivates us to choose five 
hydrodynamic fields (p(r,  t )  denoting mass density, e(r, t )  denoting the total energy 
density and U( r, t )  denoting the momentum density; r stands for the position coordinate 
and t for time) as state variables. The time evolution equations for ( p ,  e, U )  will be 
introduced in two steps. First we focus our attention on the non-dissipative time 
evolution. We say that the time evolution is non-dissipative if there exists a functional 
S of the state variables ( p ,  e, U )  that satisfies the following five properties. 

(SI )  The functional S is a convex functional of ( p ,  e, U). 
(S2) We limit ourselves only to functions of the type 

S =  d r s ( r , t )  I 
where s(r ,  t )  is a sufficiently regular function of p ( r ,  t ) ,  e(r, t ) ,  u(r, t )  pointwise for 
all r, t .  

- 0. 
d S  
d t  

(S3) -- 

(S4) The transformation 

( P ,  e, U )  + ( P ,  s, U )  (2.3) 

is one-to-one. 
( S 5 )  The functional S evaluated at equilibrium states (as will be defined in remark 

2.1 of this section) is the equilibrium thermodynamic entropy of the fluid under 
consideration. For this reason, the functional S will be called an entropy. If we choose 
( p ,  e, U )  as state variables we speak about the energy representation, if we choose 
( p ,  s, U )  as state variables we speak about the entropy representation. 

We now introduce the equations governing the non-dissipative time evolution. We 
shall introduce them first in the entropy representation. Let A, B, . . . , and all capital 
letters denote sufficiently regular functionals of ( p ,  e, U). It has been shown (Iwinski 
and Turski 1976, Morrison et a1 1980, Dzyaloshinskii and Volovick 1980) that 

d t  a t  a t  a t  (2.4) 

(where A, = 6A/6p(r, t ) ,  . . . denotes the Volterra functional derivative; y = 1,2, 3;in 
this paper we use the summation convention) can be recast into the form 

dA 
---={A, E }  
dt  ( 2 . 5 )  
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where 

(2.7) 

The symbol a, represents d / d r , .  The bracket (2.7) is a Poisson bracket (i.e. { A , B }  
dependslinearlyonA,,A,,A,,B,, B,, B , ; { A ,  B } =  - { B , A } ;  { A , { B ,  C } } + { B , { C , A } } +  
{ C, { A ,  B}}  = 0). Equation (2.5), required to hold for all A, is called a non-canonical 
formulation of a Hamiltonian system (Marsden and Weinstein 1982, Olver 1986, Salmon 
1988). The bracket (2.7) can be introduced by identifying the natural Lie algebraic 
structure of the hydrodynamic state space (Dzyaloshinskii and Volovick 1980, Marsden 
and Weinstein 1982, Holm and Kupersmidt 1983). The Hamiltonian structure of 
non-dissipative hydrodynamic equations has been first introduced in canonical form 
by Clebsh (1985). Transformations relating canonical and non-canonical formulations 
of Hamiltonian systems are discussed in detail in Holm et aZ(l986) and Salmon (1988). 

We shall now rewrite (2.5) in the form 

+ drAu,~-a,(u,eu7)-pd,(e,)-  uydol(eu,)- saa(es)3 (2.8) 1 
where e, = ae(r, t)/dp(r, t )  etc. We used integration by parts and boundary conditions 
that make all the integrals over the surface of the region confining the fluid under 
consideration equal to zero. Since (2.8) holds for all A, we have 

( 2 . 9 ~ )  dP 
- = -a, (pe,, 1 
a t  

as 
a t  
_ -  - -a, (se,,, I (2.96) 

( 2 . 9 ~ )  

Now we compare (2.9) with the non-dissipative hydrodynamic equations of simple 

a U, _-  - - a , ( u , e , y ) - ~ ~ , ( e , ) - u , a , ( e u y ) - s ~ , ( e . ~ ) .  
a t  

fluids. Equation ( 2 . 9 ~ )  is equivalent to 

dP - = -a& Pa = U, = PU, (2.10) 
a t  

where denotes the flux of the mass density and U the fluid velocity. If 

(2.11) 
1 
P 

e,- = - U, = U, 
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then (2.9b) is the local form of (2.2) with the entropy flux 

0 s  s , = - u , .  
P 

Equation ( 2 . 9 ~ )  is identical to 

(2.12) 

(2.13) 

where the momentum flux is given by 
'0, = u Q v y  +psrXy (2.14) 

if the scalar pressure p satisfies 

a m p  = pa, ( e p )  + uya, ( e u Y )  + saQ ( e s ) .  (2.15) 

By combining 
due = ef a,p + euYa,u, + e,d,s (2.16) 

and (2.15) we have 
p = - e  + se, + pep + uyeuy. (2.17) 

Equation (2.17), which holds pointwise for all r, t, is known as the local equilibrium 
relation. It implies that the fields e, s, p ,  p are related, pointwise, as energy, entropy, 
pressure and mass introduced in equilibrium thermodynamics (at equilibrium states 
u = O ,  as we shall see later in this section, so that the term in (2.17) which involves 
momentum U disappears at equilibrium). We note that we have arrived at the local 
equilibrium relation (2.17) from the Hamiltonian structure. In the standard introduc- 
tion of hydrodynamic equations the local equilibrium relation arises from the assump- 
tion of the local equilibrium. 

Before introducing the irreversible part of the time evolution (i.e. the part which 
causes the entropy to grow), we shall rewrite the non-dissipative time evolution in the 
energy representation. By using the property (S4)-see equation (2.3)-we have 

S l a p +  6 / 6 p + e p 6 / 6 e  

S/6u,  + 6 / 6 u ,  i- e,,,S/Se 

S /  6s + e$/ 6 e  
(2.18) 

(2.19) 
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Equation (2.5) thus becomes (note that E, = 1, E,, = 0, E, 0) 

which implies that 

(2.20) 

(2.21a) 

de 
d t  
- = -d,(Uyeu,eu,)-a,(pe,eUn)-a,(se,eum). (2.21c) 

Equation ( 2 . 2 1 ~ )  is the same as (2.90) and (2.10). Equation (2.21b) is equivalent to 
(2.13), (2.14) if (2.15) is used. Equation ( 2 . 2 0 ~ )  becomes, if (2.17) is used, 

de 
a t  
-= -a , (&)  (2.22) 

where the energy flux B is given by 

la = ( e + p ) e u m .  (2.23) 

This is the equation governing the non-dissipative time evolution of the energy field 
of simple fluids. We have thus again, now in the energy representation, arrived at the 
result that the local equilibrium relation (2.17) guarantees the equivalence of the time 
evolution equations implied by the Hamiltonian structure (2.7) with the non-dissipative 
hydrodynamic equations of simple fluids. We note that the bracket (2.19) is again the 
Poisson bracket. This is because the brackets (2.7) and (2.19) are related by the 
one-to-one transformation ( 2 . 3 ) .  For the bracket (2.19), the entropy S is a Casimir 
(also called distinguished) functional. We say that a functional C is a Casimir 
functional for a bracket { , } if {A, C }  = 0 holds for all functionals A (Marsden and 
Weinstein 1982). This property of the bracket (2.19) implies, in the energy representa- 
tion, the non-dissipativity condition (2.2). 

Now we turn our attention to the dissipative part of the time evolution of hydro- 
dynamic fields p, e, U. We want to add some terms to the right-hand side of (2.9) and 
(2.21) so that we shall preserve the conservation of the total mass, energy and momentum 
(i.e. we shall have d M / d t  = 0, d U / d t  = 0, d E / d t  = 0 where M = s drp( r ,  t )  and U, = 

d r  U, (r, t ) )  but the non-dissipative condition (2.2) will change into the dissipative 
condition 

% 0. 
d t  

(2.24) 

We shall first use the energy representation. Following Moreau (1970) and Edelen 
(1972) we begin by introducing first the so-called dissipative potential @. We say that 
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0: R" + R, (x,,  x2 , .  . . x,) + O ( x l , .  . . , x,) is a dissipative potential if it satisfies the 
following properties: 

(01) 0 ( 0 ,  0, . . . , 0) = 0 
( 0 2 )  
( 0 3 )  

0 reaches its minimum at (0, 0, . . . , 0) 
0 is convex in a neighbourhood of (0, 0, . . . , 0). 

(2 .25)  

A straightforward consequence of the properties (2 .25)  is (Edelen 1972): 

(2 .26)  

For our purpose, we choose grad(§,)-', Grad U, div U as the independent variables 
xl,.  . . , x, of the dissipative potential 0. By Grad we denote a symmetric gradient, 
i.e. (Grad u ) " ~  = i ( d v , / d r p  +av,/ar,). Now we modify (2 .20)  into 

def 
& = ao. 

2 = -a, (pe , , )  
at 

( 2 . 2 7 a )  

( 2 . 2 7 ~ )  

Equation ( 2 . 9 b )  governing the time evolution of the entropy density s now becomes 

where 

(2 .28)  

(2 .29)  

The inequality (2 .29)  holds because the dissipative potential has been chosen to satisfy 
( 2 . 2 6 ) .  By comparing ( 2 . 2 7 6 )  with (2 .13)  we see that the momentum flux (2 .14)  has 
changed into 

(2 .30)  J,, = u,vp +pa , ,  + U$) 
where the irreversible extra stress tensor dirr) is given by 

6 0  -~ u(irr) = - 6 0  
6(Grad u ) ~ ,  S(div u )  

(2 .31)  

By comparing ( 2 . 2 7 ~ )  with (2 .22)  we see that the energy flux ( 2 . 2 3 )  has changed into 

=(e+p)u,+(+~/I;'vp+qbjrr) (2 .32)  

where the irreversible heat flux q(irr) is given by 

(2 .33)  
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We note that in the particular case when Q, is chosen to be a quadratic potential, (2.27) 
become the Navier-Stokes-Fourier hydrodynamic equations. We end this section with 
two remarks. 

Remark 2.1. Following Grmela (1984, 1986), Morrison (1984) and Kaufman (1984), 
we note that (2.27) can be formulated in the form (2.5) if we generalise the bracket 
{ , } and the generating functional E. In order that (2.27) can be cast into the form 

dA 
- = ( A ,  G) 
d t  

we have to choose 

(A, B )  = { A ,  B }  + { { A ,  
where { , } is the Poisson bracket (2.19): 

and 

G = E - k ,  T,S 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

where k ,  is the Boltzmann constant and To is a constant equilibrium temperature. The 
equivalence of (2.34) and (2.27) can be directly verified. We note some properties of 
the bracket {{  ,}}. First, we observe that { { A ,  B } }  depends linearly only on A,, A,,  
A,. Its dependence on B,, Be,  B, is non-linear. Second, we note that the inequality 
(2.29) implies that 

{{A, A}} 0 (2.38) 

holds for all functionals A. Third, we note that E is the Casimir functional for the 
bracket {{ , }} (i.e. { { A ,  E } }  = 0 for all functionals A ) .  We recall that S is the Casimir 
functional for the Poisson bracket { , }. This degeneracy of the brackets {{ , }} and { , } 
allows us to introduce a single generating functional G (see (2.37)) of the time evolution 
of simple fluids. Since E has the physical meaning of energy and S of entropy, the 
physical meaning of G introduced in (2.37) is a free energy. The states for which the 
functional G reaches its minimum are called equilibrium states. The functionals E, S 
and G evaluated at equilibrium states become the equilibrium energy, entropy and 
free energy. Equation (2.34) expresses the generalised Hamiltonian structure of simple 
fluids. 

Remark2.2. In P 1, we stated that the entropy inequality, the local equalibrium relation 
and the Onsager-Casimir symmetry are consequences of the generalised Hamiltonian 
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structure. So far, we have seen the entropy inequality (2.24) and the local equilibrium 
relation (2.17). It remains to introduce the Onsager-Casimir symmetry and to show 
that it is a consequence of the generalised Hamiltonian structure. Let us linearise 
(2.27) about an equilibrium state ( p e q ,  eeq, ueq) defined in remark 2.1. Let us denote 

* P’ = P - Peq e = e - eeq U = U - ueq. 

Equation (2.27) linearised about ( p e q ,  eeq, ueq) becomes 

(2.39) 

(2.40) 

where P is a linear operator. It can be easily seen that the properties of the bracket 
( , )  introduced in (2.34) imply that P is a formally self-adjoint operator with respect 
to the indefinite inner product 

( , I &  ) (2.41) 

where 6 is a Hessian matrix of the functional G evaluated at the equilibrium state 
peq,  eeq, ueq, I is the parity operator 

I 

(P’, t?, C) e(;, i?, -i) (2.42) 

and ( , )  is the L2 inner product. The self-adjointness remains formal since we say 
nothing about the domain of the linear operator P. It has been shown (Grmela 1986 
and references cited therein) that this property of the linearised time evolution equation 
is equivalent to the Onsager-Casimir reciprocity relations. We have suggested therefore 
calling the formal self-adjointness of the linearised vector field P an Onsager-Casimir 
symmetry. Any vector field obtained by linearising a generalised Hamiltonian vector 
field about an equilibrium state possesses the Onsager-Casimir symmetry. 

3. Hamiltonian mechanics of complex fluids 

In this section the analysis introduced in § 2 is extended to complex fluids. As we 
have mentioned already in D 1, experience shows that the time evolution equations 
involving only hydrodynamic fields are insufficient for describing the time evolution 
that agrees with the observed macroscopic behaviour (e.g. viscoelastic behaviour) of 
complex fluids. We recall that by a time evolution equation we mean in this paper 
always an equation that is local in time, i.e. an equation that does not involve integrals 
over the past time. The equations describing the time evolution of hydrodynamic fields 
have to be coupled to equations describing the time evolution of the internal structure. 

The first question that has to be answered when dealing with complex fluids is how 
the internal structure will be described. In this paper we take inspiration from kinetic 
theory of polymeric fluids (Kirkwood 1967, Bird et a1 1987, Doi and Edwards 1986) 
and choose the configuration space distribution function $ as the quantity describing 
internal states; $( r, R, t )  d r  dR is the probability of finding a molecule (or a suspended 
rod-like particle) at (r, r + d r )  with the end-to-end vector R at (R, R + dR)  at time t. 
The complete set of state variables with which we shall describe states of complex 
fluids is thus (p ,  e, U,  $). Everything introduced and derived in this section will reduce 
to the concepts and results introduced in 0 2 if only the functionals that are independent 
of rl, are considered. 
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In the search for the equations that govern the time evolution of the state variables 
p, e, U, I), we shall follow closely the presentation introduced in § 2. We begin with 
the non-dissipative time evolution. We shall assume that the non-dissipative time 
evolution equations possess the Hamiltonian structure. As a result, we obtain the 
non-dissipative time evolution equations for +, and similarly as in § 2, the scalar 
pressure, the extra stress tensor and the heat flux expressed in terms of the state 
variables and the entropy functional. Consideration, similar to those introduced in 
0 2, of the dissipative part of the time evolution then complete the results. The reader 
who wants to see only the results can proceed directly to § 4 where the main results 
are listed and discussed. The assumption that the equations governing the time 
evolution of (p ,  e, U, I)) possess the same generalised Hamiltonian structure as the 
classical hydrodynamic equations governing the time evolution of (p ,  e, U )  is justified 
by the observation (see Grmela 1986, 1988b) that both the time evolution equations 
for (p,  e, U )  and (p ,  e, U,+) have to be compatible with equilibrium thermodynamic 
experience and that it is the generalised Hamiltonian structure that guarantees this 
compatibility. An indirect justification of the assumption follows from the comparison 
of the consequences of the assumption (i.e. the constitutive relations) with the constitu- 
tive relations arising in the context of other types of considerations (see § 4). 

We begin by introducing the entropy functional S, which is required to satisfy the 
following properties. 

(S1)c The functional -S is a convex functional of (p, e, U, I)). 
(S2)c We shall consider only functionals of the type 

S =  drs( r ,  t )  (3.1) i 
where s(r, t )  is a sufficiently regular function of p(r, t ) ,  e(r, t ) ,  I)(r, R, t ) ,  
grad I)(r, R, t )  zffa/far)I)(r, R, t )  pointwise for all r, t. We allow for s to depend also 
on grad I) in order to introduce a setting in which we are able to consider equilibrium 
and dynamical aspects of spinodal-type decompositions that take place during isotropy- 
anisotropy transitions (see more about this in § 4). 

(S3)c The non-dissipativity condition is again 

- 0. 
d S  
d t  
-- (3.2) 

(S4)c The transformation 

is one-to-one. We shall assume, moreover, in order to simplify some of the calculations 
arising later, that 

s = i ( p ,  e, U, q j )  + ;(grad I)) 

e = Z(p, s, U, I)) + ;(grad I)). 
(3.4) 

(S5)c The functional S evaluated at equilibrium states (defined similarly as in 
0 2-see remark 3.1) is the equilibrium thermodynamic entropy of the complex fluids 
under consideration. Some examples of polymeric fluids and the corresponding func- 
tionals S will be introduced in § 4. 

As we have pointed out in § 1, the Hamiltonian structure is a property of the 
non-dissipative time evolution equations that is shared by many well established (i.e. 
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well tested against experimental results) time evolution equations on many levels of 
description (Grmela 1986, 1988b). We shall therefore assume that the equations 
governing the non-dissipative time evolution of (p, s, U, +) also possess the Hamiltonian 
structure and can be thus formulated in the form of (2.5). The generating functional 
will still be the total energy, the bracket will not, however, be the same as the bracket 
(2.7). The bracket involving the state variables (U, 4 )  has already been introduced in 
Grmela (1988a). By combining this bracket and the bracket (2.7) we arrive at 

{A, B } =  I drP[a,(A,)Bum -a,(Bp)Aua1+ dru,[&dAuY)BuU -a,(BUy)AU=1 

+ d r s [a, (A ,  1 Bum - 3, ( B, )Aua 1 I 

The symbol S"'A/ S(" )+  denotes the variational derivative 
6'"'A def q = A* - U d y *  * (3.6) 

We now have to show that the bracket (3.5) is a Poisson bracket. The bracket (3.5) 
depends linearly on A,, A,, A,, A,, B,, B,, B,, B, and {A, B }  = -{B, A}. It thus 
remains to prove the Jacobi identity {A, {B,  C } }  + {B,  { C, A}} + { C, {A, B}}  = 0. This 
can be done by a direct verification. In the calculations we can use the facts already 
known, as for example that if p = s = 0 or if only functionals that are independent of 
4 are considered, then the Jacobi identity is satisfied, and the results proved in Morrison 
(1983). Alternatively, we can follow Holm and Kupercshmidt (1983) and use algebraic 
arguments. Similarly as we have transformed (2.5) into (2.8), we transform (3.5) into 

r r 

+ drAum -ay(  u,euY) -pd,e,, - u,a,euY - sames J l  

which implies 

(3.7) 

aP 
-= -a,(peum) a t  

as 
a t  
- = -3, (se,-) 

(3.8a) 

(3 .8b )  
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The sixth term on the right-hand side of ( 3 . 8 ~ )  will be rewritten as 

* w , e a y ,  = am(;+ *a,ea,*)-a,(a,~ea,*). (3.9) 
We have used the form of the energy functional introduced in (3.4). Equation ( 3 . 8 ~ )  
can now be written in the form of (3.13) with 

J,, = +pa, ,  + ffq. (3.10) 

The extra stress tensor F is 

J F , ~ = - {  a dRd,$e,,, (3.11) 

and the scalar pressure p satisfies 

Equation (3.12) together with 

a,e = a,;+ epd,p + eUpd,u, + e,d,s + dR e$d,$ I 
implies 

p = - e + s e ,  +pep  + #,eu, + dR $ ( e ,  -dyeayo) .  J 
(3.13) 

(3.14) 

We note that in the context of complex fluids, the momentum flux S in the non- 
dissipative time evolution equations involves the extra stress tensor F. The local 
equilibrium relation (see (2.17) in the context of simple fluids) also changes (see (3.14)). 
We shall discuss (3.11) and (3.14) in more detail in §4 .  Equation (3.8d) expresses 
the free advection of the vector R by the flow. We shall see in § 4 that this is indeed 
the equation describing the non-dissipative time evolution of $ that arises in kinetic 
theory. 

Following § 2, we shall reformulate (3.5)-(3.8) into the energy representation. By 
applying the transformation (3.3) we have 

S S  s 
- + - + e p -  
6p 6p Se 

6 6 
- + e , -  
6s Se 

(3.15) 
S S  s - + -+ e,,* - 

Su, Sua Se 
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(3.16) 
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Equation (2.5) then yields (we use E, = 1, E,  = E, = E$ = 0, (3.14), (3 .1  1 ) )  

(3.17) 

where 

qa = d R  + a y i e U , ) e , u ~ - * a p ( e u v ) R p - ( e , , ~ )  * (3.18) 

The physical interpretation of (3.17) and (3.18) will be discussed in 8 4. Now we turn 
our attention to the irreversible part of the time evolution equations. 

As in 0 2, our objective is to add to the right-hand side of (3.17) some terms so 
that the conservation of the total mass, momentum and energy is preserved and the 
non-dissipativity condition (3.2) changes into the dissipativity condition (2.24). Follow- 
ing the method used in $ 2 ,  we introduce first the dissipative potential Cp. (see the text 
after (2.24)). The independent variables of Q, are now grad(s,)-', Grad U, div 0, 

I (  aRY a )  

(3.19) 

( 3 . 2 0 ~ )  

(3.20b) 

( 3 . 2 0 ~  

(3.20d 



Hamiltonian mechanics of complex fluids 43 89 

The quantities p ,  U and q appearing in (3.20) are given by (3.14), (3.11) and (3.18). 
By comparing (3.20b) with (2.13), we find that the momentum flux 5 is 

J,, = u,e,, + p a , ,  + uaaP + U$) (3.21) 

where the scalar pressure p is given by (3.14), the reversible extra stress tensor U is 
given by (3.11) and the irreversible extra stress tensor dirrJ is given by 

Similarly, by comparing ( 3 . 2 0 ~ )  with (2.22) we obtain the energy flux 

e“, = ( e  +p)v, + a,,uP + u$’Y, + q, + qt r r )  

(3.22) 

(3.23) 

where p ,  U, d i r r J ,  q are given by (3.14), (3.11), (3.22), (3.18) and the irreversible heat 
flux q(irr) is given by 

(3.24) 

The time evolution of the entropy density s ( r ,  t )  is governed by (2.28) with B given 
by (3.19). 

Remarks 2.1 and 2.2 made in § 2 can be easily adapted to the setting introduced 
in this section. The time evolution (3.20) can again be cast into the form (2.34) with 
the bracket { , } given by (3.16) and {{  , }} given by (3.16) with one additional term 

If we linearise (3.20) about an equilibrium state ( p e q ,  ueq, eeq, (Cleq) (defined again as 
a state at which the generating functional G given by (2.37) reaches its minimum), we 
obtain 

I (3.26) 

where p, C, i are given by (2.29) and 6 = (Cl - i)eq. Properties of the brackets { , } and 
{{  ,}}  imply again that the linear operator P is formally self-adjoint with respect to 
the indefinite inner product (2.41) with the parity operator Z given by 

4. Discussion 

The main results of this paper are: (i)  equation (3.20d) governing the time evolution 
of the configuration space distribution function I), (i i)  the local equilibrium relation 
(3.14), (iii) the expressions (3.11) and (3.22) for the extra stress tensor, and (iv) the 
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expressions (3.18) and (3.24) for the heat flux. In this section, we shall compare these 
results with results derived previously in kinetic theory. A direct comparison with 
experimental results is not considered in this paper. 

First, we compare the starting position taken in this paper with the starting position 
taken in kinetic theory. The assumption from which the results of this paper have 
been derived is that the time evolution equations of complex fluids possess a generalised 
Hamiltonian structure. Three types of argument have been advanced to justify this 
assumption. First, we have shown in § 2 that the ordinary hydrodynamic equations 
of simple fluids possess the generalised Hamiltonian structure. We have also seen in 
Q 2 that the generalised Hamiltonian structure implies the entropy inequality, the local 
equilibrium relation and the Onsager-Casimir symmetry. These three properties of 
the time evolution equations of simple fluids have also been derived in other approaches 
to modelling of simple fluids (see, e.g., de Groot and Maxur 1969). Second, we have 
observed that the generalised Hamiltonian structure is also a structure of many other 
well established (i.e. well tested against experimental results) dynamical theories on 
many different levels of description. Third, the properties of solutions of the time 
evolution equations that are implied by the generalised Hamiltonian structure have 
been interpreted as an expression of the compatibility of a dynamical theory with 
equilibrium thermodynamics. In other words, the generalised Hamiltonian structure 
guarantees agreement of solutions of the time evolution equations with the observations 
on which equilibrium thermodynamics is based. Particularly well explored is the link 
between the Hamiltonian structure and the stability of certain stationary solutions 
(Arnold 1965, Holm et al 1985, 1986). Summing up, the results obtained in this paper 
arise from an attempt to formulate the time evolution equations whose consequences 
agree with results of observations. The focus has been put on the consequences that 
can be compared with the experience on which equilibrium thermodynamics is based. 
Now, we recall the starting position taken in kinetic theory. The foundation for kinetic 
theory is provided by quantum or classical mechanics of molecules composing the 
fluids under consideration. The macroscopic properties are searched as patterns in 
the set of molecular trajectories obtained by solving the dynamical equations of classical 
or quantum mechanics. The difficulties arise in: (i) associating the actual conditions 
under which the fluids are observed with initial and boundary conditions needed to 
solve the molecular dynamics; (ii) finding the trajectories (i.e. solving the equations 
governing the time evolution of the molecules); and (iii) identifying the patterns in 
the set of the trajectories expressing the macroscopic properties that are observed in 
hydrodynamic measurements. To overcome these difficulties, many unjustified or 
partially justified assumptions are usually introduced. The starting position of kinetic 
theory is thus classical or quantum mechanics and the assumptions introduced in the 
passage from the molecular description to the hydrodynamic description. The approach 
used in this paper (we shall call it a phenomenological approach) and the kinetic 
theory approach should be regarded as complementary. The phenomenological 
approach helps in the passage from the molecular to the hydrodynamic description; 
kinetic theory can be used on the other hand to specify the phenomenological quantities 
introduced in the phenomenological approach. For example, the generating functional 
G (see (2.37)) corresponding to the fluid under consideration can be suggested by 
using the Gibbs equilibrium statistical mechanics. 

Now we shall discuss each of the main results of this paper separately. We begin 
with the configuration space kinetic equation (3.20d). We observe that its non- 
dissipative part (equation (3.8d)) is a Liouville (Liouville 1838) equation corresponding 
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to 

. a ~ ,  
r, = U, (4.1) 

These equations describe the time evolution of a macromolecule advected by the flow. 
Following the kinetic theory arguments, (3.8d) can thus be readily derived (Kirkwood 
1967, Bird et a1 1987). The phenomenological and kinetic theory arguments lead thus 
to identical non-dissipative configuration space kinetic equations. Next, we turn our 
attention to the dissipative (also called diffusion) part of the kinetic equation. This 
part arises in kinetic theory from a consideration of the effect of the Brownian motion 
and the Stokes drag forces on the motion of macromolecules. Kirkwood (1967) has 
considered inflexible macromolecules and arrived in this way to 

a a -x( D-* aR, ) 
where D is the diffusion coefficient that can depend on the configuration space 
distribution function $. It can easily be verified that (4.2) can be cast into the form 
of the third term on the right-hand side of (3.20d) if @ is chosen to be quadratic and 

s ( r , t ) = -  dR*( r ,R , t ) ln* ( r ,R , t ) .  (4.3) J 
In (4.3) we recognise the Boltzmann (Boltzmann 1968) expression for entropy. We 
see thus that in the particular case of polymeric fluids composed of inflexible 
macromolecules both the kinetic and the phenomenological approaches lead to the 
same dissipative part in the kinetic equation. The usefulness of the formulation of the 
dissipative term that appears in (3.20d) will be illustrated on the following example. 
Let the macromolecules composing the polymeric fluid under consideration be flexible, 
and not inflexible as assumed by Kirkwood (1967). Then, by following the kinetic 
theory approach, we first have to find how the change in the flexibility changes the 
Brownian motion and the Stokes drag forces. This turns out to be a difficult problem. 
By following the phenomenological approach, we look instead at the problem of how 
the change in flexibility influences the entropy functional. This problem has been 
considered, by using Gibbs equilibrium statistical mechanics, by Lifschitz (1968) and 
Khokhlov and Semenov (1985). Once we know the entropy functional, we can readily 
write the dissipative term by using the formulation appearing in (3.20d) (Grmela and 
Chhon Ly 1987). The phenomenological approach thus allows one to replace the 
difficult problem of specifying the Brownian motion of flexible macromolecules by a 
simpler problem of specifying the entropy functional for the flexible macromolecules. 

The entropy functionals that have been considered in this paper depend not only 
on the configuration distribution function (1, but also on its derivatives with respect to 
the position coordinate r. We shall explain now the reason why we have considered 
this general case. We recall that the configuration space distribution function $ 
characterises the internal (molecular) structure of the fluids under consideration. Let, 
for example, the polymeric fluid under consideration be a polymeric liquid crystal (e.g. 
Ciferri 1982). It has been established experimentally (e.g. Onogi and Asada 1980) that 
the spatial inhomogeneities of the macromolecular structure play an important role in 
determining the equilibrium and hydrodynamic properties of polymeric liquid crystals. 
In particular, it has been observed that the inhomogeneities of the internal structure 
arise spontaneously during the isotropy-anisotropy phase transitions. This effect is 
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analogous to the spinodal decomposition observed in the liquid-solid phase transitions. 
In order to be able to model these phenomena, the free energy functional (in other 
words, the generating functional) has to depend on spatial gradients of the chosen 
internal state variable. This has already been established by Cahn (1961) in the context 
of the liquid-solid phase transitions in simple fluids (in this case the internal state 
variable is chosen to be the field of the mass density). Entropy functionals that depend 
non-locally on the configuration space distribution function $ have been introduced 
by Priest (1973) and Straley (1973). 

The second main result of this paper that we shall compare with results obtained 
in kinetic theory and in other approaches is the local equilibrium relation (3.14). We 
note that if e is independent of $ and grad $ then this relation reduces to the familiar 
local equilibrium relation (2.17). This means that the relation (3.14) can be regarded 
as an extension of the local equilibrium relation (2.17) to complex fluids. The physical 
picture that is behind the local equilibrium relation (2.17) is that the fluid under 
consideration is locally at equilibrium and that the scalar pressure appearing in the 
hydrodynamic equations is the corresponding local equilibrium pressure. To the best 
of our knowledge, this picture cannot be directly extended to complex fluids. Neither 
has kinetic theory been able to provide an extension of the local equilibrium relation. 

The third main result of this paper is the expressions (3.1 1) and (3.22) for the extra 
stress tensor (7. We note first that if @ is a quadratic potential then (3.22) is the usual 
Navier-Stokes extra stress tensor. The first term on the right hand side of (3.11) is 
the well known Kramers (1944) stress derived by using the arguments of kinetic theory. 
The third term on the right-hand side of (3.11) is essentially the extra stress tensor 
introduced in the context of liquid crystals by Ericksen (1960). Ericksen’s analysis 
differs from ours in two respects. First, Ericksen uses a different internal state variable 
to ours; second, his arguments are based on completely different considerations than 
we use. The internal state variable chosen by Ericksen is a vector field n(r, t )  that can 
be related to the distribution function $(r, R, t )  by 

(4.4) 

One important advantage of choosing the configuration space distribution function $ 
instead of the vector field n is that with n we cannot model the isotropy-anisotropy 
phase transitions. The fluid has to be already anisotropic if the vector field n is chosen 
to describe its internal structure. If we would choose n(r, t )  instead of $(r, R, t )  and 
follow the phenomenological approach introduced in this paper then the term that 
would correspond to the third term on the right-hand side of (3.11) would be exactly 
the term derived by Ericksen (see Grmela 1989, where this analysis is done for 
incompressible and isothermal fluids). The second term on the right-hand side of 
(3.11) is a new term that has not been noticed before on any level of description. 
Summing up we note that a(’rr1 is a standard irreversible extra stress tensor, the first 
term on the right-hand side of (3.11) can be derived by using the kinetic theory 
arguments, the third term is an extension of the Ericksen stress to the configuration 
space kinetic theory setting (to the best of our knowledge, no kinetic theory derivation 
of this stress has appeared before) and the second term on the right-hand side of (3.1 1) 
is completely new even if considered in the setting used by Ericksen. 

Finally, we shall comment on the heat flux (3.18) and (3.24). The irreversible heat 
flux q(irr) given by (3.24) is (if @ is chosen to be a quadratic potential) the usual Fourier 
heat flux. The reversible heat flux (3.18) is a new result that we cannot relate to any 
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other result derived previously in kinetic theory or other approaches. We note that 
this reversible heat flux is different from zero only if the free energy depends on the 
derivatives of the configuration space distribution function with respect to the position 
coordinate. The justification of the reversible heat flux (3.18) thus rests solely on the 
intrinsic consistency of the analysis presented in this paper. All results, including those 
that can be derived by using some other independent arguments, have been derived 
from the generalised Hamiltonian structure of the time evolution equations. An 
experimental evidence for a non-Fourier heat transfer and a non-Fickean mass transfer 
in spatially inhomogeneous polymeric fluids has been mentioned by Ocone and Astarita 
(1987) and Thomas and Windle (1982). 
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